基于GPS的堆叠串行LSTM组合神经网络目标跟踪方法
DOI:
https://doi.org/10.52810/FAAI.2024.002Keywords:
轨迹估计, 循环神经网络, GPS, 滤波算法, LSTM, 堆叠串行结构Abstract
机动目标轨迹估计广泛应用于无人驾驶、拦截导弹等领域。由于机动目标的运动特性的不确定性、传感器精度低的问题,轨迹估计一直是一个开放研究问题和一项有挑战性的工作。本文提出了目标运动特性不确情况下,一种基于深度 LSTM 神经网络的轨迹估计方法。该网络有两个具有堆叠串行关系的 LSTM 网络组成,其中,一个 LSTM 网络用于预测运动状态,另一个网络用于更新状态。与经典的基于机动模型的 Kalman 滤波器相比,本文的方法基于网络学习、无需对运动特性和传感器特性进行建模。实验结果表明,该方法可以在目标运动具有未知和不确定性的情况下,有效提升轨迹的估计性能。
References
K. Mathiassen, L. Hanssen and O. Hallingstad, A low cost navigation unit for positioning of personnel after loss of GPS position, 2010 International Conference on Indoor Positioning and Indoor Navigation, Zurich, Switzerland, 1-10, 2010.
Huang, Z., Zhang, P., Liu, R., & Li, D. (2023). An Improved YOLOv3-Based Method for Immature Apple Detection. IECE Transactions on Internet of Things, 1(1), 9-14.
B. S Y, X. R. Li, T. Kirubarajan, Estimation with applications to tracking and navigation: theory algorithms and software. New York: Wiley-Interscience, 2001.
Julier, J. Simon, K. U. Jeffrey, New extension of the Kalman filter to nonlinear systems, Signal processing, sensor fusion, and target recognition, 3068: 182-193, 1997.
S. Julier, J. Uhlmann, H. F. Durrant-Whyte, A new method for the nonlinear transformation of means and covariances in filters and estimators, IEEE Transactions on automatic control, 45(3): 477-482, 2000.
S. J. Julier, J. K. Uhlmann, Unscented filtering and nonlinear estimation, Proceedings of the IEEE, 92(3): 401-422, 2004.
I. Arasaratnam, S. Haykin, Cubature kalman filters, IEEE Transactions on automatic control, 54(6): 1254-1269, 2009.
P. Li, J. Yu, M. Wan, J. Huang, The augmented form of cubature Kalman filter and quadrature Kalman filter for additive noise, In 2009 IEEE Youth Conference on Information, Computing and Telecommunication, 2009: 295-298.
Y. Chen, X. Xie, B. Yu, Multitarget vehicle tracking and motion state estimation using a novel driving environment perception system of intelligent vehicles, Journal of advanced transportation, 2021: 1-16, 2021.
M. Eltoukhy, M. O. Ahmad, M. N. S. Swamy, An adaptive turn rate estimation for tracking a maneuvering target, IEEE Access, 8: 94176-94189, 2020.
L. Wang, G. Zhou, Pseudo-spectrum based track-before-detect for weak maneuvering targets in range-Doppler plane, IEEE Transactions on Vehicular Technology, 70(4), 3043-3058, 2021.
S. Jia, Y. Zhang, G. Wang, Highly maneuvering target tracking using multi-parameter fusion Singer model, Journal of Systems Engineering and Electronics, 28(5): 841-850,2017
Zhenkai, Xiong, F. Li, L. Zhang, Study on Maneuvering Target On-axis Tracking Algorithm of Modified Current Statistical Model, MATEC Web of Conferences, 160, 02008, 2018.
B. S. Y, Multitarget-Multisensor Tracking: Applications and Advances. 1992, chapter 2.
H. Jyh, L. Aiid, D. P. Atherton, Investigation of IMM Tracking Algorithm for The Maneuvering Target Tracking, First IEEE Regional Conf. on Aerospace Control System, 53: 113-117, 1993.
H. Sepp, S. Jürgen, Long Short-Term Memory, Neural Comput, 9(8): 1735–1780, 1997.
C. Chen, P. Zhao, C. X. Lu, W. Wang, A. Markham, N. Trigoni, Deep-learning-based pedestrian inertial navigation: Methods, data set, and on-device inference, IEEE Internet Things J, 7(5): 4431–4441, 2020.
B. Wang, C. Chen, C. X. Lu, AtLoc: Attention Guided Camera Localization, Proceedings of the AAAI Conference on Artificial Intelligence, 34(6): 10393-10401, 2020.
S. Wang, R. Clark, H. Wen, N. Trigoni, DeepVO : Towards End-to-End Visual Odometry with Deep Recurrent Convolutional Neural Networks, in IEEE International Conference on Robotics and Automation (ICRA), 2017: 2043-2050.
R. Clark, S. Wang, A. Markham, N. Trigoni, H. Wen, VidLoc: A Deep Spatio-Temporal Model for 6-DoF Video-Clip Relocalization, in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017: 6856-6864.
T. Zhou, M. Brown, N. Snavely, Unsupervised Learning of Depth and Ego-Motion from Video, in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017: 1851-1858.
Y. Sun, J. Xie, J. Guo, A new maneuvering target tracking method using adaptive cubature Kalman filter, in 2014 IEEE International Conference on Control Science and Systems Engineering, 2014: 40-44.
N. Nagui, O. Attallah, M. S. Zaghloul, Improved GPS/IMU loosely coupled integration scheme using two kalman filter-based cascaded stages, Arabian Journal for Science and Engineering, 46: 1345-1367, 2021.
Y. Sun, J. Xie, J. Guo, H. Wang, Y. Zhao, A modified marginalized Kalman filter for maneuvering target tracking, in Proceedings of 2nd International Conference on Information Technology and Electronic Commerce, 2014: 107-111.
Y. Huang, Y. Zhang, P. Shi and J. Chambers, Variational Adaptive Kalman Filter With Gaussian-Inverse-Wishart Mixture Distribution, in IEEE Transactions on Automatic Control, 66(4): 1786-1793, 2021.
Y. Chang, Y. Wang, Y. Shen, A new fuzzy strong tracking cubature Kalman filter for INS/GNSS, GPS Solutions, 25(3): 120, 2021.
S. S. Xiong, Z. Y. Zhou, Neural filtering of colored noise based on Kalman filter structure, IEEE Transactions on Instrumentation and Measurement, 52(3): 742-747, 2003.
Morales, F. Eduardo, A survey on deep learning and deep reinforcement learning in robotics with a tutorial on deep reinforcement learning, Intelligent Service Robotics, 14(5): 773-805, 2021.
K. Yeo, K. IMelny, Deep learning algorithm for data-driven simulation of noisy dynamical system, Journal of Computational Physics, 376: 1212-1231, 2018.
J. Liu, Z. Wang, M. Xu, DeepMTT: A deep learning maneuvering target-tracking algorithm based on bidirectional LSTM network, Information Fusion, 53: 289-304, 2020.
J. Zhang, Y. Wu, S. Jiao, Research on Trajectory Tracking Algorithm Based on LSTM-UKF, in 2021 7th IEEE International Conference on Network Intelligence and Digital Content (IC-NIDC), 2021: 61-65.
S. Li, C. Hu, R. Wang, C. Zhou, J. Yang, A maneuvering tracking method based on LSTM and CS model, in 2019 IEEE International Conference on Signal, Information and Data Processing (ICSIDP), 2019: 1-4.
Y. Cui, A new target tracking filter based on deep learning, Chinese Journal of Aeronautics, 35(5): 11-24,2022.
K. Vedula, M. L. Weiss, R. C. Paffenroth, J. R. Uzarski, D. Richard. Brown, Maneuvering Target Tracking using the Autoencoder-Interacting Multiple Model Filter, in 2020 54th Asilomar Conference on Signals, Systems, and Computers, 2020: 1512-1517.
F. Giuliari, I. Hasan, M. Cristani, Transformer Networks for Trajectory Forecasting, in 2020 25th International Conference on Pattern Recognition (ICPR), 2021: 10335-10342.
H, Bo, Trajnet: A trajectory-based deep learning model for traffic prediction, in Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, 2021: 716-724.
J. J. Q, Travel Mode Identification With GPS Trajectories Using Wavelet Transform and Deep Learning, IEEE Transactions on Intelligent Transportation Systems, 22(2): 1093-1103, 2021.
Zhang, J., Feng, J., Zhou, Y., Fang, F., & Yue, H. (2012). Linear active disturbance rejection control of waste heat recovery systems with organic Rankine cycles. Energies, 5(12), 5111-5125.
Fang, F. A. N. G., Tan, W., & Liu, J. Z. (2005). Tuning of coordinated controllers for boiler-turbine units. Acta Automatica Sinica, 31(2), 291-296.
Lv, Y., Fang, F. A. N. G., Yang, T., & Romero, C. E. (2020). An early fault detection method for induced draft fans based on MSET with informative memory matrix selection. ISA transactions, 102, 325-334.
Fang, F., & Wu, X. (2020). A win–win mode: The complementary and coexistence of 5G networks and edge computing. IEEE Internet of Things Journal, 8(6), 3983-4003.
Fang, F., & Xiong, Y. (2014). Event-driven-based water level control for nuclear steam generators. IEEE Transactions on Industrial electronics, 61(10), 5480-5489.
Liu, J., Zeng, D., Tian, L., Gao, M., Wang, W., Niu, Y., & Fang, F. (2015). Control strategy for operating flexibility of coal-fired power plants in alternate electrical power systems. Proceedings of the CSEE, 35(21), 5385-5394.
Fang, F., Zhu, Z., Jin, S., & Hu, S. (2020). Two-layer game theoretic microgrid capacity optimization considering uncertainty of renewable energy. IEEE Systems Journal, 15(3), 4260-4271.
Liu, J., Song, D., Li, Q., Yang, J., Hu, Y., Fang, F., & Joo, Y. H. (2023). Life cycle cost modelling and economic analysis of wind power: A state of art review. Energy Conversion and Management, 277, 116628.
Wei, L., & Fang, F. (2016). ${H} _ {infty} $-LQR-Based Coordinated Control for Large Coal-Fired Boiler–Turbine Generation Units. IEEE Transactions on Industrial Electronics, 64(6), 5212-5221.
Zhang, X., Fang, F., & Liu, J. (2019). Weather-classification-MARS-based photovoltaic power forecasting for energy imbalance market. IEEE Transactions on Industrial Electronics, 66(11), 8692-8702.
Wang, N., Fang, F., & Feng, M. (2014, May). Multi-objective optimal analysis of comfort and energy management for intelligent buildings. In The 26th Chinese control and decision conference (2014 CCDC) (pp. 2783-2788). IEEE.
Wang, W., Liu, J., Zeng, D., Fang, F., & Niu, Y. (2020). Modeling and flexible load control of combined heat and power units. Applied Thermal Engineering, 166, 114624.
Lv, Y., Lv, X., Fang, F., Yang, T., & Romero, C. E. (2020). Adaptive selective catalytic reduction model development using typical operating data in coal-fired power plants. Energy, 192, 116589.
Fang, F., Jizhen, L., & Wen, T. (2004). Nonlinear internal model control for the boiler-turbine coordinate systems of power unit. PROCEEDINGS-CHINESE SOCIETY OF ELECTRICAL ENGINEERING, 24(4), 195-199.
Xu, D., Zhu, Z., Liu, C., Wang, Y., Zhao, S., Zhang, L., ... & Cheng, K. T. (2021). Reliability evaluation and analysis of FPGA-based neural network acceleration system. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 29(3), 472-484.
Li, W., Wang, Y., Li, H., & Li, X. (2019, January). P3M: a PIM-based neural network model protection scheme for deep learning accelerator. In Proceedings of the 24th Asia and South Pacific Design Automation Conference (pp. 633-638).
Wang, Y., Deng, J., Fang, Y., Li, H., & Li, X. (2017). Resilience-aware frequency tuning for neural-network-based approximate computing chips. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 25(10), 2736-2748.
Qu, S., Li, B., Wang, Y., Xu, D., Zhao, X., & Zhang, L. (2020, July). RaQu: An automatic high-utilization CNN quantization and mapping framework for general-purpose RRAM accelerator. In 2020 57th ACM/IEEE Design Automation Conference (DAC) (pp. 1-6). IEEE.
Liu, B., Chen, X., Wang, Y., Han, Y., Li, J., Xu, H., & Li, X. (2019, January). Addressing the issue of processing element under-utilization in general-purpose systolic deep learning accelerators. In Proceedings of the 24th Asia and South Pacific Design Automation Conference (pp. 733-738).
Wang, C., Wang, Y., Han, Y., Song, L., Quan, Z., Li, J., & Li, X. (2017, January). CNN-based object detection solutions for embedded heterogeneous multicore SoCs. In 2017 22nd Asia and South Pacific design automation conference (ASP-DAC) (pp. 105-110). IEEE.
Xu, D., Chu, C., Wang, Q., Liu, C., Wang, Y., Zhang, L., ... & Cheng, K. T. (2020, October). A hybrid computing architecture for fault-tolerant deep learning accelerators. In 2020 IEEE 38th International Conference on Computer Design (ICCD) (pp. 478-485). IEEE.
Liu, C., Chu, C., Xu, D., Wang, Y., Wang, Q., Li, H., ... & Cheng, K. T. (2021). HyCA: A hybrid computing architecture for fault-tolerant deep learning. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 41(10), 3400-3413.
Wang, Y., Li, H., & Li, X. (2017). A case of on-chip memory subsystem design for low-power CNN accelerators. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 37(10), 1971-1984.
Li, J., Chen, Z., Cheng, L., & Liu, X. (2022). Energy data generation with wasserstein deep convolutional generative adversarial networks. Energy, 257, 124694.
Lian, S., Han, Y., Chen, X., Wang, Y., & Xiao, H. (2018, June). Dadu-p: A scalable accelerator for robot motion planning in a dynamic environment. In Proceedings of the 55th Annual Design Automation Conference (pp. 1-6).
Chang, K., Wang, Y., Ren, H., Wang, M., Liang, S., Han, Y., ... & Li, X. (2023). Chipgpt: How far are we from natural language hardware design. arXiv preprint arXiv:2305.14019.
Wang, Y., Han, Y., Zhang, L., Li, H., & Li, X. (2015, June). ProPRAM: Exploiting the transparent logic resources in non-volatile memory for near data computing. In Proceedings of the 52nd Annual Design Automation Conference (pp. 1-6).
Li, C., Wang, Y., Liu, C., Liang, S., Li, H., & Li, X. (2021). {GLIST}: Towards {in-storage} graph learning. In 2021 USENIX Annual Technical Conference (USENIX ATC 21) (pp. 225-238).
Han, Y., Wang, Y., Li, H., & Li, X. (2014, November). Data-aware DRAM refresh to squeeze the margin of retention time in hybrid memory cube. In 2014 IEEE/ACM International Conference on Computer-Aided Design (ICCAD) (pp. 295-300). IEEE.
Zhao, X., Wang, Y., Liu, C., Shi, C., Tu, K., & Zhang, L. (2020, July). BitPruner: Network pruning for bit-serial accelerators. In 2020 57th ACM/IEEE Design Automation Conference (DAC) (pp. 1-6). IEEE.
Wu, B., Wang, C., Wang, Z., Wang, Y., Zhang, D., Liu, D., ... & Hu, X. S. (2020). Field-free 3T2SOT MRAM for non-volatile cache memories. IEEE Transactions on Circuits and Systems I: Regular Papers, 67(12), 4660-4669.
Ma, X., Wang, Y., Wang, Y., Cai, X., & Han, Y. (2022). Survey on chiplets: interface, interconnect and integration methodology. CCF Transactions on High Performance Computing, 4(1), 43-52.
Hamdioui, S., Pouyan, P., Li, H., Wang, Y., Raychowdhur, A., & Yoon, I. (2017, November). Test and reliability of emerging non-volatile memories. In 2017 IEEE 26th Asian Test Symposium (ATS) (pp. 175-183). IEEE.
Chen, W., Wang, Y., Yang, S., Liu, C., & Zhang, L. (2020, March). You only search once: A fast automation framework for single-stage dnn/accelerator co-design. In 2020 Design, Automation & Test in Europe Conference & Exhibition (DATE) (pp. 1283-1286). IEEE.
Liu, Q., Cheng, L., Alves, R., Ozcelebi, T., Kuipers, F., Xu, G., ... & Chen, S. (2021). Cluster-based flow control in hybrid software-defined wireless sensor networks. Computer Networks, 187, 107788.
Liu, Q., Cheng, L., Ozcelebi, T., Murphy, J., & Lukkien, J. (2019, May). Deep reinforcement learning for IoT network dynamic clustering in edge computing. In 2019 19th IEEE/ACM international symposium on cluster, Cloud and Grid Computing (CCGRID) (pp. 600-603). IEEE.