滚动轴承故障诊断研究综述
DOI:
https://doi.org/10.52810/FAAI.2024.001Keywords:
滚动轴承, 故障诊断, 深度学习, 迁移学习Abstract
滚动轴承作为旋转机械的核心部件,保持对轴承健康状态的监测能保证整个机械设备的正常运转。对于轴承故障检测方法的研究已经有了长久的发展,本文从传统故障检测方法到引入深度学习算法进行故障检测最后提出迁移学习在轴承故障诊断领域的应用进行了综述。传统的故障检测方法可以根据诊断步骤分为特征提取、故障识别两类,阐述了不同方法的适用条件以及应用缺陷。基于深度学习的轴承故障检测,尽管有了一定的发展,但是因其在数据和标签上的局限性,该类型的模型仍然有很大的发展空间和研究潜力。随着迁移学习方法的引入解决了在数据和标签上的限制,为轴承故障检测提供了新的思路和方向,并阐述了迁移学习方法目前面临的困境。
References
Jiangquan Zang, Yi Sun, Liang Guo, et al. A new bearing fault diagnosis method based on modified convolutional neural networks[J]. Chinese Journal of Aeronautics, 2020, 33: 439-447.
Duy-Tang Hoang,Hee-Jun Kang. A survey on Deep Learning based bearing fault diagnosis[J]. Neurocomputing, 2019, 335: 327-335.
焦静. 基于同轴振动特征融合的滚动轴承故障诊断研究[D]. 北京交通大学, 2022
刘永志. 基于深度迁移学习的滚动轴承故障诊断方法研究[D]. 西南交通大学, 2022
金国强. 基于深度学习的复杂工况下端到端的滚动轴承故障诊断算法研究[D]. 中国科学技术大学, 2020
Rai Akhand, Upadhyay S.H. A review on signal processing techniques utilized in the fault diagnosis of rolling element bearings[J]. Tribology International, 2016.
Bodi Cui, ang Weng, Ning Zhang. A feature extraction and machine learning framework for bearing fault diagnosis[J]. Renewable Energy, 2022, 191: 987-997.
刘迎松, 魏志刚, 束海星, 等. 基于参数自适应VMD和MCKD的滚动轴承微弱故障特征提取[J]. 噪声与振动控制, 2023, 43(03): 102-109.
王新刚, 王超, 韩凯忠. 基于优化VMD和MCKD的滚动轴承早期故障诊断方法[J]. 东北大学学报(自然科学版), 2021, 42(03): 373-380, 388.
陈远帆, 李舜酩. 基于高斯混合模型与改进网格搜索法的轴承故障诊断[J]. 重庆理工大学学报(自然科学), 2016, 30(03): 34-39.
刘敏, 叶艳媛, 杨清清, 等. 基于CEEMDAN和倒频谱方法的圆锥滚子轴承振动信号分析[J]. 机电工程技术, 2023, 52(08): 165-170.
江志农, 张永申, 冯坤, 等. 基于特征增强倒频谱分析的齿轮故障诊断方法[J]. 机械传动, 2019, 43(10): 13-17, 55.
赵克钦, 程峰, 杨世飞. 变转速下对数平方包络谱在滚动轴承故障诊断中的应用[J]. 噪声与振动控制, 2023, 43(02): 132-138.
王茜, 田慕琴, 宋建成, 等. 基于经验小波变换的振动信号特征量提取[J]. 振动与冲击, 2021, 40(16): 261-266.
杨健, 张永平. 基于小波包和聚类算法的滚动轴承故障检测研究[J]. 盐城工学院学报(自然科学版), 2023, 36(01): 67-73.
陈代俊, 陈里里, 董绍江. 基于VMD-CWT-CNN的滚动轴承故障诊断[J]. 机械强度, 2023, 45(06): 1280-1285.
李军星, 徐行, 贾现召, 等. 基于EEMD与CNN-BiLSTM噪声环境下滚动轴承故障预测方法研究[J]. 轴承, 2023.
黄晓诚, 贺青川, 陈文华. 基于VMD与MLP的电机轴承故障检测方法[J]. 机电工程, 2022, 39(07): 911-918.
孟宗, 吕蒙, 殷娜, 等. 基于改进变分模态分解的滚动轴承故障诊断方法[J]. 计量学报, 2020, 41(06): 717-723.
刘飞, 陈仁文, 邢凯玲, 等. 基于迁移学习与深度残差网络的滚动轴承快速故障诊断算法[J]. 振动与冲击, 2022, 41(03): 154-164.
王亚萍, 许迪, 葛江华, 等. 基于SPWVD时频图纹理特征的滚动轴承故障诊断[J]. 振动.测试与诊断, 2017, 37(01): 115-119, 203.
陈司昱. 基于支持向量机的滚动轴承故障特征选择和诊断方法研究[D]. 长春工业大学, 2023
汤天宝, 周志健, 张涛, 等. 基于奇异谱分解和两层支持向量机轴承故障诊断方法[J]. 噪声与振动控制, 2022, 42(01): 100-105.
易静姝. 人工神经网络在滚动轴承故障诊断中的应用与发展[J]. 价值工程, 2019, 38(24): 274-276.
刘斌, 刘佳, 张海鹏. 基于经验模态分析的机床主轴轴承外圈非接触式故障检测方法[J]. 制造技术与机床, 2023, No.727(01): 21-28.
朱兴统. 基于小波包分解和K最近邻算法的轴承故障诊断方法[J]. 装备制造技术, 2020, (02): 24-27, 45.
丁明彬. 基于小波变换和决策树的电机滚动轴承故障诊断[J]. 内燃机与配件, 2023, No.395(23): 54-57.
沙盟. 基于改进随机森林的电机轴承故障诊断研究[D]. 太原科技大学, 2023
Bo Peng, Ying Bi, Bing Xue, et al. A Survey on Fault Diagnosis of Rolling Bearings[J]. Algorithms, 2022, 15: 347.
贾美霞, 韩宝坤, 王金瑞,等. 基于迁移堆栈自编码器的轴承故障诊断方法[J]. 噪声与振动控制, 2021, 41(06): 84-89, 125.
苏靖涵, 张潇. 基于深度迁移自编码器的变工况下滚动轴承故障诊断方法[J]. 计算机测量与控制, 2021, 29(07): 85-90, 99.
龚俊, 张月义, 陈思戢, 等. 基于SWT与改进卷积神经网络的轴承故障诊断[J]. 现代电子技术, 2024, 47(06): 68-74.
李辉, 徐伟烝. 噪声干扰下的CCSD-CNN轴承故障诊断方法[J]. 轴承, 2023, (10): 93-100.
董绍江, 裴雪武, 吴文亮, 等. 基于多层降噪技术及改进卷积神经网络的滚动轴承故障诊断方法[J]. 机械工程学报, 2021, 57(01): 148-156.
刘鹏, 皮骏, 胡超. 基于DBN网络的滚动轴承故障诊断[J]. 组合机床与自动化加工技术, 2024, (01): 140-144.
沈长青, 汤盛浩, 江星星, 等. 独立自适应学习率优化深度信念网络在轴承故障诊断中的应用研究[J]. 机械工程学报, 2019, 55(07): 81-88.
邵良杉, 朱思佳. 基于改进HHO-LSTM的滚动轴承故障诊断研究[J]. 机械强度, 2024, 46(01): 17-23.
郑直, 张华钦, 潘月. 基于改进鲸鱼算法优化LSTM的滚动轴承故障诊断[J]. 振动与冲击, 2021, 40(07): 274-280.
Zhang Shen, Zhang Shibo, Wang Bingnan. Deep Learning Algorithms for Bearing Fault Diagnostics—A Comprehensive Review[J]. IEEE Access, 2020, 8: 29857-29881.
王鹏, 李丹青, 王恒. 基于改进交替迁移学习的滚动轴承故障诊断算法[J]. 振动与冲击, 2024, 43(05): 239-249.
高丽鹏, 雷文平, 曹亚磊, 等. 深度多模态迁移学习在轴承故障诊断中的研究[J]. 机械设计与制造, 2023: 1-5.
Neupane Dhiraj, Seok Jongwon. Bearing Fault Detection and Diagnosis Using Case Western Reserve University Dataset With Deep Learning Approaches: A Review[J]. IEEE Access, 2020, 8: 93155-93178.
Liu, J., Wang, Q., Song, Z., & Fang, F. (2021). Bottlenecks and countermeasures of high-penetration renewable energy development in China. Engineering, 7(11), 1611-1622.
Zhang, J., Feng, J., Zhou, Y., Fang, F., & Yue, H. (2012). Linear active disturbance rejection control of waste heat recovery systems with organic Rankine cycles. Energies, 5(12), 5111-5125.
Wang, W., Liu, J., Zeng, D., Fang, F., & Niu, Y. (2020). Modeling and flexible load control of combined heat and power units. Applied Thermal Engineering, 166, 114624.
Liu, J., Song, D., Li, Q., Yang, J., Hu, Y., Fang, F., & Joo, Y. H. (2023). Life cycle cost modelling and economic analysis of wind power: A state of art review. Energy Conversion and Management, 277, 116628.
Fang, F., & Xiong, Y. (2014). Event-driven-based water level control for nuclear steam generators. IEEE Transactions on Industrial electronics, 61(10), 5480-5489.
Fang, F. A. N. G., Tan, W., & Liu, J. Z. (2005). Tuning of coordinated controllers for boiler-turbine units. Acta Automatica Sinica, 31(2), 291-296.
Lv, Y., Lv, X., Fang, F., Yang, T., & Romero, C. E. (2020). Adaptive selective catalytic reduction model development using typical operating data in coal-fired power plants. Energy, 192, 116589.
Wang, N., Fang, F., & Feng, M. (2014, May). Multi-objective optimal analysis of comfort and energy management for intelligent buildings. In The 26th Chinese control and decision conference (2014 CCDC) (pp. 2783-2788). IEEE.
Zhang, X., Fang, F., & Liu, J. (2019). Weather-classification-MARS-based photovoltaic power forecasting for energy imbalance market. IEEE Transactions on Industrial Electronics, 66(11), 8692-8702.
Wei, L., & Fang, F. (2016). ${H} _ {infty} $-LQR-Based Coordinated Control for Large Coal-Fired Boiler–Turbine Generation Units. IEEE Transactions on Industrial Electronics, 64(6), 5212-5221.
Fang, F., Zhu, Z., Jin, S., & Hu, S. (2020). Two-layer game theoretic microgrid capacity optimization considering uncertainty of renewable energy. IEEE Systems Journal, 15(3), 4260-4271.
Liu, J., Zeng, D., Tian, L., Gao, M., Wang, W., Niu, Y., & Fang, F. (2015). Control strategy for operating flexibility of coal-fired power plants in alternate electrical power systems. Proceedings of the CSEE, 35(21), 5385-5394.
Fang, F., & Wu, X. (2020). A win–win mode: The complementary and coexistence of 5G networks and edge computing. IEEE Internet of Things Journal, 8(6), 3983-4003.
Lv, Y., Fang, F. A. N. G., Yang, T., & Romero, C. E. (2020). An early fault detection method for induced draft fans based on MSET with informative memory matrix selection. ISA transactions, 102, 325-334.
Fang, F., Jizhen, L., & Wen, T. (2004). Nonlinear internal model control for the boiler-turbine coordinate systems of power unit. PROCEEDINGS-CHINESE SOCIETY OF ELECTRICAL ENGINEERING, 24(4), 195-199.
Xu, D., Zhu, Z., Liu, C., Wang, Y., Zhao, S., Zhang, L., ... & Cheng, K. T. (2021). Reliability evaluation and analysis of FPGA-based neural network acceleration system. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 29(3), 472-484.
Li, W., Wang, Y., Li, H., & Li, X. (2019, January). P3M: a PIM-based neural network model protection scheme for deep learning accelerator. In Proceedings of the 24th Asia and South Pacific Design Automation Conference (pp. 633-638).
Wang, Y., Deng, J., Fang, Y., Li, H., & Li, X. (2017). Resilience-aware frequency tuning for neural-network-based approximate computing chips. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 25(10), 2736-2748.
Qu, S., Li, B., Wang, Y., Xu, D., Zhao, X., & Zhang, L. (2020, July). RaQu: An automatic high-utilization CNN quantization and mapping framework for general-purpose RRAM accelerator. In 2020 57th ACM/IEEE Design Automation Conference (DAC) (pp. 1-6). IEEE.
Wang, C., Wang, Y., Han, Y., Song, L., Quan, Z., Li, J., & Li, X. (2017, January). CNN-based object detection solutions for embedded heterogeneous multicore SoCs. In 2017 22nd Asia and South Pacific design automation conference (ASP-DAC) (pp. 105-110). IEEE.
Xu, D., Chu, C., Wang, Q., Liu, C., Wang, Y., Zhang, L., ... & Cheng, K. T. (2020, October). A hybrid computing architecture for fault-tolerant deep learning accelerators. In 2020 IEEE 38th International Conference on Computer Design (ICCD) (pp. 478-485). IEEE.
Liu, C., Chu, C., Xu, D., Wang, Y., Wang, Q., Li, H., ... & Cheng, K. T. (2021). HyCA: A hybrid computing architecture for fault-tolerant deep learning. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 41(10), 3400-3413.
Wang, Y., Li, H., & Li, X. (2017). A case of on-chip memory subsystem design for low-power CNN accelerators. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 37(10), 1971-1984.
Lian, S., Han, Y., Chen, X., Wang, Y., & Xiao, H. (2018, June). Dadu-p: A scalable accelerator for robot motion planning in a dynamic environment. In Proceedings of the 55th Annual Design Automation Conference (pp. 1-6).
Chang, K., Wang, Y., Ren, H., Wang, M., Liang, S., Han, Y., ... & Li, X. (2023). Chipgpt: How far are we from natural language hardware design. arXiv preprint arXiv:2305.14019.
Wang, Y., Han, Y., Zhang, L., Li, H., & Li, X. (2015, June). ProPRAM: Exploiting the transparent logic resources in non-volatile memory for near data computing. In Proceedings of the 52nd Annual Design Automation Conference (pp. 1-6).
Li, C., Wang, Y., Liu, C., Liang, S., Li, H., & Li, X. (2021). {GLIST}: Towards {in-storage} graph learning. In 2021 USENIX Annual Technical Conference (USENIX ATC 21) (pp. 225-238).
Han, Y., Wang, Y., Li, H., & Li, X. (2014, November). Data-aware DRAM refresh to squeeze the margin of retention time in hybrid memory cube. In 2014 IEEE/ACM International Conference on Computer-Aided Design (ICCAD) (pp. 295-300). IEEE.
Wu, B., Wang, C., Wang, Z., Wang, Y., Zhang, D., Liu, D., ... & Hu, X. S. (2020). Field-free 3T2SOT MRAM for non-volatile cache memories. IEEE Transactions on Circuits and Systems I: Regular Papers, 67(12), 4660-4669.
Ma, X., Wang, Y., Wang, Y., Cai, X., & Han, Y. (2022). Survey on chiplets: interface, interconnect and integration methodology. CCF Transactions on High Performance Computing, 4(1), 43-52.