畜牧业来源的抗生素耐药大肠杆菌研究进展

作者

  • 李 嘉 北京工商大学,大型仪器设备共享中心,北京 100048 作者
  • 孙 世广 北京工商大学,轻工科学与工程学院,北京 100048 作者

DOI:

https://doi.org/10.52810/CJNS.2024.001

关键词:

抗生素耐药性, 大肠杆菌, 农场动物, 选择, 消毒

摘要

大肠杆菌是动物和人类胃肠道和肠道外疾病的最常见原因之一。由于抗生素的过度使用和误用,近年来抗生素耐药大肠杆菌在全球的流行率迅速上升;特别是来自农场动物相关来源的抗生素耐药大肠杆菌及其抗生素耐药基因 (ARGs) 正在成为全球关注的问题,并且在临床上对人类和动物的健康都具有负面的影响。本综述的目的是探讨来自畜牧业、废物处理和水生环境的抗生素耐药大肠杆菌的流行趋势。重点介绍了抗生素的消毒方法和可能的替代方法。同时发现来自食用动物、产品和动物粪便的过敏性大肠杆菌的流行率正在以惊人的速度增加,但在废物处理厂却有所减少。紫外线 (UV) 处理、表面等离子体氧化和生物炭通常用于有效消除抗生素耐药大肠杆菌。一些益生菌、植物提取物和抗菌肽作为抗生素的有希望的替代品正在引起人们的更大关注。目前的研究表明,来自畜牧业的抗生素耐药大肠杆菌普遍存在,并对全球公共卫生构成严重威胁。这一综述为进一步研究、开发和应用新的策略来减少农场动物源性大肠杆菌的抗生素耐药性提供了新的思路。

作者简历

  • 作者
    李嘉(1983-)男,北京市人,北京工商大学大型仪器管理中心 , 研究方向:大型仪器开放共享、数据分析、维护、维修。
  • 作者
    孙世广 就读于北京工商大学生物工程专业。研究方向为机器学习预测蛋白质多肽结构与功能。

参考文献

Rugumisa T B, Call R D, Mwanyika O G, et al. Comparison of the prevalence of antibiotic-resistant Escherichia coli isolates from commercial-layer and free-range chickens in Arusha district, Tanzania[J]. African Journal of Microbiology Research,2016,10(34):1422-1429.

Chen J W, Huang H H, Chang S M, et al. Antibiotic-Resistant Escherichia coli and Sequence Type 131 in Fecal Colonization in Dogs in Taiwan [J]. Microorganisms, 2020, 8(9): 1439.

Singh A S, Nayak B B, Kumar S H. High Prevalence of Multiple Antibiotic-Resistant, Extended-Spectrum β-Lactamase (ESBL)-Producing Escherichia coli in Fresh Seafood Sold in Retail Markets of Mumbai, India [J]. Veterinary Sciences, 2020, 7(2): 46.

Giri S, Kudva V, Shetty K, et al. Prevalence and Characterization of Extended-Spectrum β-Lactamase-Producing Antibiotic-Resistant Escherichia coli and Klebsiella pneumoniae in Ready-to-Eat Street Foods [J]. Antibiotics-Basel, 2021, 10(7): 850.

Ewers C, Antao E M, Diehl I, et al. Intestine and Environment of the Chicken as Reservoirs for Extraintestinal Pathogenic Escherichia coli Strains with Zoonotic Potential [J]. Applied and Environmental Microbiology, 2009, 75(1): 184-92.

Knutson K. Chapter 8-Nobody is talking about environmental monitoring [M] KNUTSON K. Food Safety Lessons for Cannabis-Infused Edibles. Academic Press. 2020: 111-37.

Lim J Y, Yoon J W, Hovde C J. A Brief Overview of Escherichia coli O157:H7 and Its Plasmid O157 [J]. Journal of Microbiology and Biotechnology, 2010, 20(1): 5-14.

Lin Y, Zhao W, Shi Z D, et al. Accumulation of antibiotics and heavy metals in meat duck deep litter and their role in persistence of antibiotic-resistant Escherichia coli in different flocks on one duck farm [J]. Poultry Science, 2017, 96(4): 997-1006.

Sorbara M T, Dubin K, Littmann E R, et al. Inhibiting antibiotic-resistant Enterobacteriaceae by microbiota-mediated intracellular acidification [J]. Journal of Experimental Medicine, 2019, 216(1): 84-98.

García-béjar B, Martín I G D, Arévalo-villena M, et al. High Prevalence of Antibiotic-Resistant Escherichia coli Isolates from Retail Poultry Products in Spain [J]. Animals, 2021, 11(11): 3197.

Manishimwe R, Moncada P M, Musanayire V, et al. Antibiotic-Resistant Escherichia coli and Salmonella from the Feces of Food Animals in the East Province of Rwanda [J]. Animals, 2021, 11(4): 1013.

Song H J, Kim S J, Moon D C, et al. Antimicrobial Resistance in Escherichia coli Isolates from Healthy Food Animals in South Korea, 2010-2020 [J]. Microorganisms, 2022, 10(3): 524..

Levy S B, Marshall B. Antibacterial resistance worldwide: causes, challenges and responses [J]. Nature Medicine, 2004, 10(12): S122-S9.

Reinthaler F F, Posch J, Feierl G, et al. Antibiotic resistance of E-coli in sewage and sludge [J]. Water Research, 2003, 37(8): 1685-90.

Van Hamelsveld S, Adewale M E, Kurenbach B, et al. Prevalence of antibiotic-resistant Escherichia coli isolated from urban and agricultural streams in Canterbury, New Zealand [J]. Fems Microbiology Letters, 2019, 366(8): fnz104.

Administration, D. Standards for Growing, Harvesting, Packing, and Holding of Produce for Human Consumption; Department of Health and Human Services, Food and Drug Administration: College Park [J]. MD, USA, 2015.

Van Driel A A, Notermans D W, Meima A, et al. Antibiotic resistance of Escherichia coli isolated from uncomplicated UTI in general practice patients over a 10-year period [J]. European Journal of Clinical Microbiology & Infectious Diseases, 2019, 38(11): 2151-2158.

Bhardwaj D K, Taneja N K, Shivaprasad D P, et al. Phenotypic and genotypic characterization of biofilm forming, antimicrobial resistant, pathogenic Escherichia coli isolated from Indian dairy and meat products [J]. International Journal of Food Microbiology, 2021, 336: 108899.

Bean D C, Livermore D M, Papa I, et al. Resistance among Escherichia coli to sulphonamides and other antimicrobials now little used in man [J]. Journal of Antimicrobial Chemotherapy, 2005, 56(5): 962-964.

Brynildsen M P, Winkler J A, Spina C S, et al. Potentiating antibacterial activity by predictably enhancing endogenous microbial ROS production [J]. Nature Biotechnology, 2013, 31(2): 160-165.

Yang H C, Chen S, White D G, et al. Characterization of multiple-antimicrobial-resistant Escherichia coli isolates from diseased chickens and swine in China [J]. Journal of Clinical Microbiology, 2004, 42(8): 3483-3489.

Zhang X L, Li Y X, Liu B, et al. Prevalence of Veterinary Antibiotics and Antibiotic-Resistant Escherichia coli in the Surface Water of a Livestock Production Region in Northern China [J]. Plos One, 2014, 9(11): e111026.

Mciver K S, Amoako D G, Abia A L K, et al. Molecular Epidemiology of Antibiotic-Resistant Escherichia coli from Farm-to-Fork in Intensive Poultry Production in KwaZulu-Natal, South Africa [J]. Antibiotics-Basel, 2020, 9(12): 850.

Schink A K, Kadlec K, Kaspar H, et al. Analysis of extended-spectrum-lactamase-producing Escherichia coli isolates collected in the GERM-Vet monitoring programme [J]. Journal of Antimicrobial Chemotherapy, 2013, 68(8): 1741-1749.

Messerer M, Fischer W, Schubert S. Investigation of horizontal gene transfer of pathogenicity islands in Escherichia coli using next-generation sequencing [J]. Plos One, 2017, 12(7): e0179880.

Poole T L, Callaway T R, Norman K N, et al. Transferability of antimicrobial resistance from multidrug-resistant Escherichia coli isolated from cattle in the USA to E.coli and SalmonellaNewport recipients [J]. Journal of Global Antimicrobial Resistance, 2017, 11: 123-132.

Blahna M T, Zalewski C A, Reuer J, et al. The role of horizontal gene transfer in the spread of trimethoprim–sulfamethoxazole resistance among uropathogenic Escherichia coli in Europe and Canada [J]. Journal of Antimicrobial Chemotherapy, 2006, 57(4): 666-672.

Lambrecht E, Van C E, Boon N, et al. Transfer of Antibiotic Resistance Plasmid from Commensal E. coli towards Human Intestinal Microbiota in the M-SHIME: Effect of E. coli dosis, Human Individual and Antibiotic Use [J]. Life-Basel, 2021, 11(3): 192.

Viñes J, Cuscó A, Napp S, et al. Transmission of Similar Mcr-1 Carrying Plasmids among Different Escherichia coli Lineages Isolated from Livestock and the Farmer [J]. Antibiotics-Basel, 2021, 10(3): 313.

Ye M, Sun M M, Zhao Y C, et al. Targeted inactivation of antibiotic-resistant Escherichia coli and Pseudomonas aeruginosa in a soil-lettuce system by combined polyvalent bacteriophage and biochar treatment [J]. Environmental Pollution, 2018, 241: 978-987.

Song R Y, Li H, Kang Z, et al. Surface plasma induced elimination of antibiotic-resistant Escherichia coli and resistance genes: Antibiotic resistance, horizontal gene transfer, and mechanisms [J]. Separation and Purification Technology, 2021, 275: 119185.

Zhao X, Su H, Xu W, et al. Removal of antibiotic resistance genes and inactivation of antibiotic-resistant bacteria by oxidative treatments[J]. Science of the Total Environment, 2021, 778: 146348.

Li H, Kang Z, Jiang E, et al. Plasma induced efficient removal of antibiotic-resistant Escherichia coli and antibiotic resistance genes, and inhibition of gene transfer by conjugation[J]. Journal of Hazardous Materials, 2021, 419: 126465.

Zhang C M, Xu L M, Wang X C, et al. Effects of ultraviolet disinfection on antibiotic-resistant Escherichia coli from wastewater: inactivation, antibiotic resistance profiles and antibiotic resistance genes [J]. Journal of Applied Microbiology, 2017, 123(1): 295-306.

De Mandal S, Panda A K, Murugan C, et al. Antimicrobial peptides: novel source and biological function with a special focus on entomopathogenic nematode/bacterium symbiotic complex[J]. Frontiers in Microbiology, 2021, 12: 555022.

Jiang C, Ding L, Dong Q, et al. Effects of root extracts of three traditional Chinese herbs as dietary supplements on dry matter intake, average daily gain, rumen fermentation and ruminal microbiota in early weaned yak calves[J]. Animal Feed Science and Technology, 2021, 278: 115002.

Rabelo-Ruiz M, Ariza-Romero J J, et al. Allium-based phytobiotic enhances egg production in laying hens through microbial composition changes in ileum and cecum[J]. Animals, 2021, 11(2): 448.

Ramirez S Y, Peñuela L M, Ospina M A. Effects of oregano (Lippia origanoides) essential oil supplementation on the performance, egg quality, and intestinal morphometry of Isa Brown laying hens [J]. Veterinary World, 2021, 14(3): 595-602.

Rima M, Rima M, Fajloun Z, et al. Antimicrobial Peptides: A Potent Alternative to Antibiotics [J]. Antibiotics, 2021, 10(9): 1095.

Xia J, Ge C, Yao H. Antimicrobial peptides from black soldier fly (Hermetia illucens) as potential antimicrobial factors representing an alternative to antibiotics in livestock farming[J]. Animals, 2021, 11(7): 1937.

Li S A, Lee W H, Zhang Y. Efficacy of OH-CATH30 and Its Analogs against Drug-Resistant Bacteria In Vitro and in Mouse Models [J]. Antimicrobial Agents and Chemotherapy, 2012, 56(6): 3309-3317.

Zaïri A, Ferrières L, Latour P, et al. In Vitro Activities of Dermaseptins K4S4 and K4K20S4 against Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa Planktonic Growth and Biofilm Formation [J]. Antimicrobial Agents and Chemotherapy, 2014, 58(4): 2221-2228.

Bechinger B, Juhl D W, Glattard E, et al. Revealing the mechanisms of synergistic action of two magainin antimicrobial peptides[J]. Frontiers in Medical Technology, 2020, 2: 615494.

Büyükkiraz M E, Kesmen Z. Antimicrobial peptides (AMPs): A promising class of antimicrobial compounds [J]. Journal of Applied Microbiology, 2022, 132(3): 1573-1596.

Krizman M, Avgustin J A, Zdovc I, et al. Antimicrobial Resistance and Molecular Characterization of Extended-Spectrum β-Lactamases and Other Escherichia coli Isolated from Food of Animal Origin and Human Intestinal Isolates [J]. Journal of Food Protection, 2017, 80(1): 113-120.

Davis G S, Waits K, Nordstrom L, et al. Antibiotic-resistant Escherichia coli from retail poultry meat with different antibiotic use claims[J]. BMC microbiology, 2018, 18: 1-7.

Balcázar J L. How do bacteriophages promote antibiotic resistance in the environment? [J]. Clinical Microbiology and Infection, 2018, 24(5): 447-449.

Azam M, Mohsin M, Sajjad U R, et al. Virulence-associated genes and antimicrobial resistance among avian pathogenic Escherichia coli from colibacillosis affected broilers in Pakistan [J]. Tropical Animal Health and Production, 2019, 51(5): 1259-1265.

Hornsey M, Betts J W, Mehat J W, et al. Characterization of a colistin-resistant Avian Pathogenic Escherichia coli ST69 isolate recovered from a broiler chicken in Germany [J]. Journal of Medical Microbiology, 2019, 68(1): 111-114.

Awad A M, El-Shall N A, Khalil D S, et al. Incidence, pathotyping, and antibiotic susceptibility of avian pathogenic Escherichia coli among diseased broiler chicks[J]. Pathogens, 2020, 9(2): 114.

Wang P, Zhang J, Chen Y, et al. ClbG in avian pathogenic Escherichia coli contributes to meningitis development in a mouse model[J]. Toxins, 2021, 13(8): 546.

Aklilu E, Harun A, Singh K K B. Molecular characterization of bla NDM, bla OXA-48, mcr-1 and bla TEM-52 positive and concurrently carbapenem and colistin resistant and extended spectrum beta-lactamase producing Escherichia coli in chicken in Malaysia[J]. BMC Veterinary Research, 2022, 18(1): 190.

Nakayama T, Thi H L, Thanh P N, et al. Abundance of colistin-resistant Escherichia coli harbouring mcr-1 and extended-spectrum β-lactamase-producing E. coli co-harbouring blaCTX-M-55or-65with blaTEM isolates from chicken meat in Vietnam [J]. Archives of Microbiology, 2022, 204(2): 137.

Abdallah H M, Al Naiemi N, Elsohaby I, et al. Prevalence of extended-spectrum β-lactamase-producing Enterobacterales in retail sheep meat from Zagazig city, Egypt[J]. BMC veterinary research, 2022, 18(1): 191.

Sabala R F, Usui M, Tamura Y, et al. Prevalence of colistin-resistant Escherichia coli harbouring mcr-1 in raw beef and ready-to-eat beef products in Egypt[J]. Food Control, 2021, 119: 107436.

Ahmad I, Khattak S, Ali R, et al. Prevalence and molecular characterization of multidrug-resistant Escherichia coli O157: H7 from dairy milk in the Peshawar region of Pakistan [J]. Journal of Food Safety, 2021, 41(6): e12941.

O'flaherty e, Borrego C M, Balcázar J L, et al. Human exposure assessment to antibiotic-resistant Escherichia coli through drinking water [J]. Science of the Total Environment, 2018, 616: 1356-1364.

Jeong S H, Kwon J Y, Shin S B, et al. Antibiotic resistance in shellfish and major inland pollution sources in the drainage basin of Kamak Bay, Republic of Korea[J]. Environmental Monitoring and Assessment, 2021, 193: 1-19.

Checcucci A, Trevisi P, Luise D, et al. Exploring the animal waste resistome: the spread of antimicrobial resistance genes through the use of livestock manure[J]. Frontiers in Microbiology, 2020, 11: 536406.

Um M M, Barraud O, Kérourédan M, et al. Comparison of the incidence of pathogenic and antibiotic-resistant Escherichia coli strains in adult cattle and veal calf slaughterhouse effluents highlighted different risks for public health[J]. Water research, 2016, 88: 30-38.

King T L B, Schmidt S. Assessment of three indigenous South African herbivores as potential reservoirs and vectors of antibiotic-resistant Escherichia coli[J]. European Journal of Wildlife Research, 2017, 63: 1-8.

Rehman M U, Zhang H, Huang S C, et al. Characteristics of Integrons and Associated Gene Cassettes in Antibiotic-Resistant Escherichia coli Isolated from Free-Ranging Food Animals in China [J]. Journal of Food Science, 2017, 82(8): 1902-1907.

Wandee S, Chan R, Chiemchaisri W, et al. Alteration of antibiotic-resistant phenotypes and minimal inhibitory concentration of Escherichia coli in pig farming: Comparison between closed and open farming systems[J]. Science of The Total Environment, 2021, 781: 146743.

Juraschek K, Deneke C, Schmoger S, et al. Phenotypic and genotypic properties of fluoroquinolone-resistant, qnr-carrying Escherichia coli isolated from the German food chain in 2017[J]. Microorganisms, 2021, 9(6): 1308.

Suzuki Y, Hiroki H, Xie H, et al. Antibiotic-resistant Escherichia coli isolated from dairy cows and their surrounding environment on a livestock farm practicing prudent antimicrobial use[J]. International Journal of Hygiene and Environmental Health, 2022, 240: 113930.

Weiss D, Wallace R M, Rwego I B, et al. Antibiotic-resistant Escherichia coli and class 1 integrons in humans, domestic animals, and wild primates in rural Uganda[J]. Applied and environmental microbiology, 2018, 84(21): e01632-18.

Schwermer C U, Krzeminski P, Wennberg A C, et al. Removal of antibiotic resistant E-coli in two Norwegian wastewater treatment plants and by nano- and ultra-filtration processes [J]. Water Science and Technology, 2018, 77(4): 1115-1126.

Osińska A, Korzeniewska E, Harnisz M, et al. The occurrence of antibiotic-resistant bacteria, including Escherichia coli, in municipal wastewater and river water [J]. E3S Web of Conferences, 2019, 100: 00061.

Bojar B, Sheridan J, Beattie R, et al. Antibiotic resistance patterns of Escherichia coli isolates from the clinic through the wastewater pathway [J]. International Journal of Hygiene and Environmental Health, 2021, 238: 113863.

Gregova G, Kmet V, Szaboova T. New Insight on Antibiotic Resistance and Virulence of Escherichia coli from Municipal and Animal Wastewater[J]. Antibiotics 2021, 10: 1111.

Zanotto C, Bissa M, Illiano E, et al. Identification of antibiotic-resistant Escherichia coli isolated from a municipal wastewater treatment plant [J]. Chemosphere, 2016, 164: 627-633.

Yuan W, Tian T, Yang Q, et al. Transfer potentials of antibiotic resistance genes in Escherichia spp. strains from different sources[J]. Chemosphere, 2020, 246: 125736.

Summerlin H N, Pola C C, Mclamore E S, et al. Prevalence of Escherichia coli and Antibiotic-Resistant Bacteria During Fresh Produce Production (Romaine Lettuce) Using Municipal Wastewater Effluents [J]. Frontiers in Microbiology, 2021, 12: 660047.

Bong C W, Low K Y, Chai L C, et al. Prevalence and diversity of antibiotic resistant Escherichia coli from anthropogenic-impacted Larut River[J]. Frontiers in Public Health, 2022, 10: 794513.

Shao S C, Hu Y Y, Cheng J H, et al. Research progress on distribution, migration, transformation of antibiotics and antibiotic resistance genes (ARGs) in aquatic environment [J]. Critical Reviews in Biotechnology, 2018, 38(8): 1195-208.

Hamelin K, Bruant G, El A, et al. Occurrence of virulence and antimicrobial resistance genes in Escherichia coli isolates from different aquatic ecosystems within the St. Clair River and Detroit River areas [J]. Applied and Environmental Microbiology, 2007, 73(2): 477-484.

Laroche E, Petit F, Fournier M, et al. Transport of antibiotic-resistant Escherichia coli in a public rural karst water supply [J]. Journal of Hydrology, 2010, 392(1-2): 12-21.

Zhang Q Q, Jia A, Wan Y, et al. Occurrences of Three Classes of Antibiotics in a Natural River Basin: Association with Antibiotic-Resistant Escherichia coli [J]. Environmental Science & Technology, 2014, 48(24): 14317-14325.

Malema M S, Abia A L K, Tandlich R, et al. Antibiotic-resistant pathogenic Escherichia coli isolated from rooftop rainwater-harvesting tanks in the Eastern Cape, South Africa[J]. International journal of environmental research and public health, 2018, 15(5): 892.

Fakhr A E, Gohar M K, Atta A H. Impact of Some Ecological Factors on Fecal Contamination of Drinking Water by Diarrheagenic Antibiotic-Resistant Escherichia coli in Zagazig City, Egypt [J]. International Journal of Microbiology, 2016: 6240703.

Ahmed W, Hodgers L, Masters N, et al. Occurrence of Intestinal and Extraintestinal Virulence Genes in Escherichia coli Isolates from Rainwater Tanks in Southeast Queensland, Australia [J]. Applied and Environmental Microbiology, 2011, 77(20): 7394-7400.

Zhou Z C, Shuai X Y, Lin Z J, et al. Prevalence of multi-resistant plasmids in hospital inhalable particulate matter (PM) and its impact on horizontal gene transfer[J]. Environmental Pollution, 2021, 270: 116296.

Yang D, Wang J F, Qiu Z G, et al. Horizontal transfer of antibiotic resistance genes in a membrane bioreactor [J]. Journal of Biotechnology, 2013, 167(4): 441-447.

Liu G, Thomsen L E, Olsen J E. Antimicrobial-induced horizontal transfer of antimicrobial resistance genes in bacteria: a mini-review [J]. Journal of Antimicrobial Chemotherapy, 2022, 77(3): 556-567.

Vinayamohan P G, Pellissery A J, Venkitanarayanan K. Role of horizontal gene transfer in the dissemination of antimicrobial resistance in food animal production[J]. Current Opinion in Food Science, 2022, 47: 100882.

Loayza F, Graham J P, Trueba G. Factors obscuring the role of E. coli from domestic animals in the global antimicrobial resistance crisis: an evidence-based review[J]. International journal of environmental research and public health, 2020, 17(9): 3061.

Zhang S, Abbas M, Rehman M U, et al. Dissemination of antibiotic resistance genes (ARGs) via integrons in Escherichia coli: a risk to human health[J]. Environmental Pollution, 2020, 266: 115260.

Liu Y Y, Wang Y, Walsh T R, et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study [J]. Lancet Infectious Diseases, 2016, 16(2): 161-168.

Blake D P, Hillman K, Fenlon D R, et al. Transfer of antibiotic resistance between commensal and pathogenic members of the Enterobacteriaceae under ileal conditions [J]. Journal of Applied Microbiology, 2003, 95(3): 428-436.

Zhang Y H, Ma Q P, Su B M, et al. A study on the role that quorum sensing play in antibiotic-resistant plasmid conjugative transfer in Escherichia coli [J]. Ecotoxicology, 2018, 27(2): 209-216.

Hiltunen T, Virta M, Laine A L. Antibiotic resistance in the wild: an eco-evolutionary perspective[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372(1712): 20160039.

Zimmer J L, Slawson R M. Potential repair of Escherichia coli DNA following exposure to UV radiation from both medium- and low-pressure UV sources used in drinking water treatment [J]. Applied and Environmental Microbiology, 2002, 68(7): 3293-3299.

Rizzo L, Fiorentino A, Anselmo A. Advanced treatment of urban wastewater by UV radiation: Effect on antibiotics and antibiotic-resistant E. coli strains [J]. Chemosphere, 2013, 92(2): 171-176.

Pang Y C, Huang J J, Xi J Y, et al. Effect of ultraviolet irradiation and chlorination on ampicillin-resistant Escherichia coli and its ampicillin resistance gene [J]. Frontiers of Environmental Science & Engineering, 2016, 10(3): 522-530.

Li H, Song R, Wang Y, et al. Inhibited conjugative transfer of antibiotic resistance genes in antibiotic resistant bacteria by surface plasma[J]. Water research, 2021, 204: 117630.

Lee C R, Cho I H, Jeong B C, et al. Strategies to Minimize Antibiotic Resistance [J]. International Journal of Environmental Research and Public Health, 2013, 10(9): 4274-4305.

Lee C R, Lee J H, Kang L W, et al. Educational Effectiveness, Target, and Content for Prudent Antibiotic Use [J]. Biomed Research International, 2015, 2015.

Uchil R R, Kohli G S, Katekhaye V M, et al. Strategies to combat antimicrobial resistance [J]. Journal of clinical and diagnostic research : JCDR, 2014, 8(7): ME01-4.

Salim H M, Huque K S, Kamaruddin K M, et al. Global restriction of using antibiotic growth promoters and alternative strategies in poultry production [J]. Science Progress, 2018, 101(1): 52-75.

Schoenmakers K. How China is getting its farmers to kick their antibiotics habit [J]. Nature, 2020, 586(7830): S60-S62.

Qiu K, Li C, Wang J, et al. Effects of dietary supplementation with Bacillus subtilis, as an alternative to antibiotics, on growth performance, serum immunity, and intestinal health in broiler chickens[J]. Frontiers in Nutrition, 2021, 8: 786878.

Soni R, Keharia H, Bose A, et al. Genome assisted probiotic characterization and application of Bacillus velezensis ZBG17 as an alternative to antibiotic growth promoters in broiler chickens [J]. Genomics, 2021, 113(6): 4061-4174.

Bilal R M, Ul H F, Saeed M, et al. Role of Yeast and Yeast-Derived Products as Feed Additives in Broiler Nutrition [J]. Animal Biotechnology, 2023, 34(2): 392-401.

Dell M, Reggi S, Caprarulo V, et al. Evaluation of Tannin Extracts, Leonardite and Tributyrin Supplementation on Diarrhoea Incidence and Gut Microbiota of Weaned Piglets [J]. Animals, 2021, 11(6): 1693..

Dakheel M M, Alkandari F A, Mueller I, et al. Antimicrobial in vitro activities of condensed tannin extracts on avian pathogenic Escherichia coli [J]. Letters in Applied Microbiology, 2020, 70(3): 165-172.

Oussalah M, Caillet S, Saucier L, et al. Inhibitory effects of selected plant essential oils on the growth of four pathogenic bacteria: E-coli O157:H7, Salmonella Typhimurium, Staphylococcus aureus and Listeria monocytogenes [J]. Food Control, 2007, 18(5): 414-420.

Abd E W, Ismail M. Tackling experimental colisepticaemia in broiler chickens using phytobiotic essential oils and antibiotic alone or in combination [J]. Iranian Journal of Veterinary Research, 2014, 15(2): 110-115.

Abd E M, El M T, Saad A M, et al. Essential oils and their nanoemulsions as green alternatives to antibiotics in poultry nutrition: a comprehensive review [J]. Poultry Science, 2022, 101(2): 101584..

Chowdhury S, Mandal G P, Patra A K, et al. Different essential oils in diets of broiler chickens: 2. Gut microbes and morphology, immune response, and some blood profile and antioxidant enzymes [J]. Animal Feed Science and Technology, 2018, 236: 39-47.

Nibbering P H, Ravensbergen E, Welling M M, et al. Human lactoferrin and peptides derived from its N terminus are highly effective against infections with antibiotic-resistant bacteria [J]. Infection and Immunity, 2001, 69(3): 1469-1476.

Mygind P H, Fischer R L, Schnorr K M, et al. Plectasin is a peptide antibiotic with therapeutic potential from a saprophytic fungus [J]. Nature, 2005, 437(7061): 975-980.

Mwangi J, Yin Y Z, Wang G, et al. The antimicrobial peptide ZY4 combats multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii infection [J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(52): 26516-26522.

Elliott A G, Huang J X, Neve S, et al. An amphipathic peptide with antibiotic activity against multidrug-resistant Gram-negative bacteria[J]. Nature communications, 2020, 11(1): 3184.

Miao J Y, Liu G, Ke C, et al. Inhibitory effects of a novel antimicrobial peptide from kefir against Escherichia coli [J]. Food Control, 2016, 65: 63-72.

Almeida-Santos A C, Novais C, Peixe L, et al. Enterococcus spp. as a producer and target of bacteriocins: a double-edged sword in the antimicrobial resistance crisis context[J]. Antibiotics, 2021, 10(10): 1215.

Prada S, Flórez J, Farfán A, et al. Antimicrobial activity of Ib-M peptides against Escherichia coli O157: H7 [J]. Plos One, 2020, 15(2): e0229019..

Yang S C, Lin C H, Sung C T, et al. Antibacterial activities of bacteriocins: application in foods and pharmaceuticals[J]. Frontiers in microbiology, 2014, 5: 91530.

Lu S Y, Graça T, Avillan J J, et al. Microcin PDI inhibits antibiotic-resistant strains of Escherichia coli and Shigella through a mechanism of membrane disruption and protection by homotrimer self-immunity[J]. Applied and Environmental Microbiology, 2019, 85(11): e00371-19.

Divyashree M, Mani M K, Reddy D, et al. Clinical Applications of Antimicrobial Peptides (AMPs): Where do We Stand Now? [J]. Protein and Peptide Letters, 2020, 27(2): 120-134.

Zhang Q Y, Yan Z B, Meng Y M, et al. Antimicrobial peptides: mechanism of action, activity and clinical potential[J]. Military Medical Research, 2021, 8: 1-25.

##submission.downloads##

已出版

2024-04-25

期次

栏目

文章

引用本文

嘉李., & 世广孙. (2024). 畜牧业来源的抗生素耐药大肠杆菌研究进展. 自然科学学报, 1(1), 1-15. https://doi.org/10.52810/CJNS.2024.001